

Persulfate-based advanced oxidation processes mediated by high-valent metal-oxo

Mingce Long^{1*}, Xue Li¹, Jie Miao¹, Lizhi Zhang¹, Pedro J. J. Alvarez²

¹Shanghai Jiao Tong University, Shanghai, 200240, China ²Rice University, Houston, TX 77005, United States

*E-mail: long_mc@sjtu.edu.cn

Presenting Author' Biography

Dr. Mingce Long is a professor of Environmental Science and Engineering at Shanghai Jiao Tong University. He received his bachelor (1999) and master (2001) at Harbin Institute of Technology, and Ph.D. (2007) from Shanghai Jiao Tong University. He joined the same university in 2008, and was promoted to professor in 2018. His research interests are heterogeneous advanced oxidation processes including photocatalysis, Fenton-like catalysis and electrocatalysis. He has published more than 130 peer reviewed papers.

Abstract

Persulfate-based advanced oxidation processes (AOPs) have attracted much attention, due to its ability to effectively remove recalcitrant organic compounds from water by avoiding the rigorous requirements of H₂O₂based Fenton reactions. The development of efficient and stable catalysts to active persulfate to produce reactive species is the key. In the AOPs, catalysts with metallic active sites can generate non-radical reactive substances (High-valent metal-oxo, HVMO) with long lifespan and selective attack toward electron groups. However, it is still unclear how to regulate the generation and reaction of HVMO. Targeting to the difficulty in generating high-valent cobalt-oxo (Co^{IV}=O), a strategy of enhancing electron delocalization in Co 3d-orbital through the asymmetric configuration of Co is developed by constructing Co sites with unique N1O2 coordination on the surface of Mn_3O_4 , thereby promoting electron delocalization and reducing the number of electrons on Co 3dorbital, making it more thermodynamically favourable for generating Co^{IV}=O in peroxymonosulfate (PMS) activation. CoN₁O₂/Mn₃O₄ exhibits high intrinsic activity for PMS activation and sulfamethoxazole (SMX) degradation, and the Co^{IV=}O species effectively oxidize the target contaminants via oxygen atom transfer to produce low-toxicity intermediates. Moreover, a similar strategy was developed to deal with the low activity of Mn^{IV}=O generated in persulfate activation by traditional MnN₄ coordination structure, a new catalyst MnN₅ were formed on g-C₃N₄ substrate through ammonium chloride mediated acetylacetone manganese pyrolysis method, achieving high selectivity in activating PMS to generate N₅Mn^{IV}=O with enhanced reactivity. These studies provide a deep understanding of the formation mechanism of HVMO at the molecular level, and helps guide the rational design of efficient environmental catalytic materials.

Keywords: Peroxymonosulfate; High-valent metal-oxo; reactivity; low-toxicity. Acknowledgements

Financial supports from the National Natural Science Foundation of China (nos. 22376138, 52070128) are gratefully acknowledged.

References

- 1. X. Li, X. Wen, J. Lang, Y. Wei, J. Miao, X. Zhang, B. Zhou, M, Long, P. J. J. Alvarez, L. Zhang, *Angewandte Chemie International Edition*, **2023**, 62, e202303267.
- J. Miao, J. Song, J. Lang, Y. Zhu, J. Dai, Y. Wei, M. Long, Z. Shao, B. Zhou, P. J. J. Alvarez, L. Zhang, *Environmental Science & Technology*, 2023, 57, 4266.