# Sidestream Ozone Injection System Based on NETmix Technology for Water Treatment

#### ORAL Ph.D. Student: N Journal: NONE

**V.J.P. Vilar**<sup>1,2</sup>, M.M. Pituco<sup>1,2</sup>, P. Marrocos<sup>1,2</sup>, F. Moreira<sup>1,2</sup> (1) LSRE-LCM - Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal, vilar.up.pt. (2) ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.



A sidestream ozone  $(O_3)$  injection system based on a novel design of a pressurized micro/meso-structured NETmix static mixer has been developed for the pre-oxidation of freshwater for human consumption. NETmix has an exclusive geometry and promotes a high intensity of O3 gas-liquid mass transfer, which is essential for sidestream injection systems. A pilot-scale prototype was installed at Lever Water Treatment Plant (located in the north of Portugal), enabling the direct comparison with the full-scale sidestream system using a Venturi injector. O<sub>3</sub> doses ranging from 0.8 to 1.3 mgO<sub>3</sub> L<sup>-1</sup> were tested unraveling a potential for lower O<sub>3</sub> dosage requirements to achieve appropriate water disinfection/oxidation maximize efficiency subsequent and the of the coagulation/flotation treatment unit.

## Introduction

Sidestream injection (SSI) systems for ozone have been gaining popularity as one of the most promising techniques for upgrading water treatment plants (WTP). SSI involves splitting off a portion of the main water flow into a side stream. O<sub>3</sub> gas is injected into this side stream by a device such as a venturi or a static mixer and then the concentrated O3 side stream is mixed back into the main flow. NETmix consists of a micro/meso-structured static mixer based on a network of unit cells formed by chambers interconnected by transport channels which generate a series of zones of complete mixing (chambers) and complete segregation (channels) [1]. It can be introduced as an alternative equipment in sidestream configurations for ozonation processes as it outperforms conventional devices [2]. Therefore, in this work, a sidestream ozone injection system based on a novel design of a pressurized NETmix reactor (NETmix SSI) has been developed aiming at the pre-oxidation of freshwater for human consumption. A pilot-scale prototype was installed in the oxidation/disinfection step at Lever WTP (north of Portugal), enabling a direct comparison with a fullscale sidestream system using a Venturi injector (Venturi SSI). In addition to analyzing the disinfection capabilities of the prototype, it was also evaluated the influence of the NETmix SSI on the downstream coagulation/flotation process.

## **Material and Methods**

The NETmix (Figure 2) consisted of a network of unit cells including cylindrical chambers (diameter = 6.75 mm, depth = 3.0 mm) interconnected by prismatic half-channels (width = 1.0 mm, length=0.5 mm,

depth = 3.0 mm). The reactor was made of a stainless-steel structure containing (i) a rear plate, (ii) a middle plate where the network of channels and chambers is imprinted on the front side, and a heat exchanger filled with fins is contained at the back side, and (iii) a frontal plate with a window of borosilicate.





Figure 2. Micro/meso-structured NETmix reactor. The pilot-scale prototype with the O<sub>3</sub> sidestream contacting train is displayed in the Graphical Illustration. In a typical test (Figure 3), 38 dm<sup>3</sup> h<sup>-1</sup> of the main water flow was diverted from the main pipeline (operated at 1250 dm3 h-1) and directed into the NETmix for efficient mixing with an O3-gas stream. An O<sub>3</sub>-enriched liquid sidestream was rapidly established (3 sec) and continuously blended into the main water flow in the pipeline utilizing opposite-facing re-entrant nozzles and a static mixer device (Kenics). Subsequently, the recombined main water flow was directed to a 4-chamber reaction tank (equipped with vertical baffles,  $V_T = 225 \text{ dm}^3$ , and HRT = 8 min) to provide the residence time for the oxidation/disinfection. O3 gas was generated using a BMT 803 N O<sub>3</sub> generator with concentrations ranging from 84 to 136 g Nm<sup>-3</sup> and gas flowrate of 12 Ndm<sup>3</sup> h<sup>-1</sup> 1

The prototype NETmix SSI was operated on different days with  $O_3$  doses of 0.8, 1.1, and 1.3 mgO<sub>3</sub> L<sup>-1</sup> while the full-scale Venturi SSI was operated at 1.4, 1.1, and 1.2 mgO<sub>3</sub> L<sup>-1</sup>, respectively. Water temperature and pH were kept in ambient (12±1 °C) and circumneutral (7.1±0.3) conditions, respectively. The bacterial inactivation (Coliform bacteria-COLIB; Clostridium perfringens-CLOST; Enterococci-ENC and Escherichia coli-E. COLI), turbidity, and Specific UV absorbance (SUVA<sub>254</sub>, absorbance at 254 nm per mg DOC) were evaluated. Samples were taken at steady-state conditions. Thereafter, coagulation/flotation tests with 40 mg Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> L<sup>-1</sup> were carried out.



Figure 3. Scheme of the low-footprint  $O_3$  sidestream prototype.

# **Results and Discussion**

NETmix SSI presented an effective bacterial inactivation (Figure 4) of COLI B, ENC, and E. COLI at an applied O<sub>3</sub> dose of 0.8 mgO<sub>3</sub> L<sup>-1</sup>, when compared to Venturi SSI with a O3 dose of 1.4 mgO3 L-1 and HRT of 10 min (based on the same raw water conditions). Additionally, complete bacterial inactivation was reached with a O<sub>3</sub> dose of 1.1 and 1.3 mgO<sub>3</sub> L<sup>-1</sup> applying NETmix SSI. CLOST was the most resistant bacteria towards O<sub>3</sub> for both sidestream injection systems evaluated. Previous works [3] reported an O<sub>3</sub> dose ≥3.0 mgO<sub>3</sub> L<sup>-1</sup> requirement to attain 99% CLOST inactivation. Moreover, O<sub>3</sub> was used to change the structure of the organic matter in the raw water and enhance subsequent coagulation/flotation efficiency (Figure 5). However, although the ozonation accomplished only a slight decrease in turbidity and SUVA<sub>254</sub>, the dosage of applied O<sub>3</sub> influenced the characteristics of dissolved organic matter (DOM), especially with NETmix SSI. At low ozone dosages (0.8 and 1.1 mgO<sub>3</sub> L<sup>-1</sup>), O<sub>3</sub> produced hydrophobic, neutral, intermediate molecular weight DOM, which was beneficial for the subsequent coagulation/flotation processes. Consequently, lower turbidity and SUVA<sub>254</sub> values were attained. On the other hand, at a larger O<sub>3</sub> dosage (1.3 mgO<sub>3</sub> L<sup>-1</sup>), the DOM was further oxidized into more hydrophilic and lower molecular weight DOM, which hampered the turbidity and SUVA<sub>254</sub> reduction efficiencies [4].



**Figure 4.** Effect of  $O_3$  dose on bacterial inactivation. The red dash line indicate the upper limit of quantification.



Figure 5. Effect of ozonation and coagulation/flotation on (a) turbidity and (b) SUVA<sub>254</sub> removal.

## Conclusions

The prototype  $O_3$  sidestream contacting train, based on a novel design of a pressurized micro/meso-structured NETmix technology, revealed a great potential to reduce  $O_3$  dosage requirements to achieve appropriate water disinfection/oxidation and maximize the efficiency of the subsequent coagulation/flotation treatment unit.

#### Acknowledgments

This work was supported by national funds through FCT/MCTES (PIDDAC): Project PTDC/EAM-AMB/4702/2020 - Cutting-Edge Ozone-Technology for Water, with DOI 10.54499/PTDC/EAM-AMB/4702/2020 (https://doi.org/10.54499/PTDC/EAM-AMB/4702/2020); LSRE-LCM, UIDB/50020/2020 (DOI: 10.54499/UIDB/50020/2020) and UIDP/50020/2020 (DOI: 10.54499/UIDP/50020/2020); and ALiCE, LA/P/0045/2020 (DOI: 10.54499/LA/P/0045/2020). M. M. Pituco and P. Marrocos acknowledge FCT for their Ph.D. scholarships (SFRH/BD/144673/2019 and 2022.10437.BD). F. C. Moreira and V. J. P. Vilar acknowledge the FCT Individual Call to Scientific Employment Stimulus 2017 (CEECIND/02196/2017 and CEECIND/01317/2017, respectively).

#### References

[1] P.E. Laranjeira, A.A. Martins, J.C.B Lopes, M.M. Dias, *AICHE J*. 55 (2009) 2226.

- [2] M.M. Pituco, P. Marrocos, R. Santos, M. Dias, J. Lopes, F. Moreira, V. Vilar, Chem. Eng. Process., 194 (2023) 109566.
- [3] M. Lanao, M.P. Ormad, C. Ibarz, N. Miguel, J.L. Ovellero, *Ozone: Sci. Eng.*, 30:6 (2008) 431.
- [4] M. Yan, D. Wang, B. Shi, M. Wang, Y. Yan, Chemosphere, 69 (2007) 1695.