
Enhanced Photocatalytic Activity of Silver Phosphate-Decorated Nickel Phosphate Microparticles Synthesized via *In Situ* Ion Exchange Reaction

POSTER Ph.D. Student: N Journal: CEJ

W. S. Sczancoski^{1,*}, J. C. Sczancoski¹, S.R.M. Antunes¹, C.P.F. Borges¹, **S. A. Alves¹**, E. C. F. Souza¹. ¹State University of Ponta Grossa, Av. General Carlos Cavalcanti-Uvaranas, 4748, Ponta Grossa, PR, Brazil, *saalves@uepg.br

Photocatalysis has proven to be one of the most promising advanced oxidation processes for decomposing organic pollutants from wastewater. In the present study, we report a simple and versatile synthetic route based on in situ ion exchange reaction to produce phosphate-decorated silver nickel phosphate [Aq₃PO₄/Ni₃(PO₄)₂] microparticles with interesting photocatalytic property. In order to determine the most effective photocatalyst, different Aq/Ni molar ratios were tested in our samples. The optimized condition was found at 60 mol%, whose photocatalyst was able to degrade the methyl blue (MB) up to 25 min under blue light illumination. The photocatalytic performance of this material was tested up to three successive cycling runs. The results demonstrated that photogenerated holes (h⁺) and superoxide radicals (O2-) were the main active species responsible for the oxidation of MB molecules.

Introduction

The humanity is facing profound challenges concerning the energy scarcity, climate change, environmental pollution and depletion of drinking water resources. These critical issues are interrelated and demand rapid action to prevent more severe implications in the future. In particular, the scarcity of freshwater is the most pressing calamity that many populations are currently experiencing in different regions of the planet. Furthermore, the quality of drinking water has been directly or indirectly affected by anthropogenic activities, which have introduced diverse pollutants as domestic sewage, pharmaceuticals. agrochemical compounds, and industrial waste [1]. The scientific community has promoted the development of different wastewater treatment techniques, including the photocatalysis. Since the pioneering study on photocatalysis published by 1972 Fujishima-Honda in [2]. several semiconductors and their combinations has been the decomposition of studies for harmful contaminants in wastewater [3]. In particular, remarkable advancements have been made by using Ni and Ag-based semiconductors as photocatalysts. An interesting study was performed by Yaning et al. [4], which investigated the photocatalvtic activitv of heterocomposites consisting of silver phosphate [Ag₃PO₄] and nickel phosphate [Ni₃(PO₄)₂]. Such materials were obtained through a cation exchange reaction. Firstly, Ni₃(PO₄)₂ was synthesized via coprecipitation, followed by the subsequent addition of silver nitrate precursor at different concentrations (40 to 80 wt.%). A similar morphological pattern was identified in all samples, revealing a high concentration of quasispherical Ag₃PO₄ nanoparticles well-distributed on the surface of amorphous Ni₃(PO₄)₂ structures. Hence, in the present study, the photocatalytic effectivity of silver phosphate-decorated nickel phosphate [Ag₃PO₄/ Ni₃(PO₄)₂] microparticles was investigated for the degradation of methyl blue (MB) under blue light illumination. The *in situ* ion exchange reaction was the chosen synthetic route. For a complete analysis, the samples were synthesized with different Ag/Ni ratios in order to identify the most effective photocatalyst. All samples presented a high degree of crystallinity, with no evidence of amorphous phase. The individual contribution of reactive oxidizing species on the degradation kinetics of MB was studied by introducing selective radical scavengers into the photocatalytic reaction medium.

Material and Methods

Nickel (II) nitrate hexahydrate [Ni(NO₃)₂·6H₂O] (Vetec, 97%), silver nitrate [AqNO₃] (Reatec, 99%), and dibasic ammonium phosphate [(NH₄)₂HPO₄] (Êxodo Científica, 98%), were were the starting reagents. In the first synthesis, 12 mmol of Ni(NO₃)₂·6H₂O and 6 mmol of (NH₄)₂HPO₄ were dissolved in 120 mL of distilled water. This mixture was transferred into a stainless steel reactor. The hydrothermal treatment was performed at 160 °C for 1 h. Ni₃(PO₄)₂ powders were separated from the solution via centrifugation and washed. Silver phosphate-decorated nickel phosphate [Ag₃PO₄/Ni₃(PO₄)₂] microparticles were prepared through an in situ ionic-exchange method. In this synthesis. 700 mg of Ni₃(PO₄)₂ was dispersed in 50 mL of deionized water. Different amounts of AqNO₃ were added to the system. The Ag/Ni molar ratios were 20, 40, 60 and 80 mol%. After stirring for 30 min, the precipitates were collected, washed and dried. Aq₃PO₄ was synthesized by coprecipitation at 90 °C for 30 min. Different experimental techniques were employed to analyse the materials, including X-Ray diffraction, ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The photocatalytic activities of as-prepared samples were examined for the photodegradation of MB (10 ppm) under blue light $(\lambda_{max} = 457 \text{ nm})$. In these tests, 50 mg of photocatalyst were added in 50 mL of MB solution under constant stirring. In order to establish adsorption/desorption equilibrium between the dye molecules and the photocatalyst, the resulting suspensions were stored in the dark under constant stirring for 40 min. Afterward, the suspensions were exposed to illumination with 50W blue light-emitting diodes. The photocatalytic performance was monitored by UV-vis absorbance changes of the MB solution as a function of illumination time. The active species in the photocatalytic reaction were detected by using different radical scavengers (5 mM concentration) into the MB solution, such as isopropanol (ISO), p-benzoquinone (BQ) and diammonium oxalate monohydrate (AO).

Results and Discussion

XRD patterns of Ag₃PO₄/Ni₃(PO₄)₂ microparticles with different Ag/Ni molar ratios showed the coexistence of both Ag₃PO₄ and Ni₃(PO₄)₂ phases. Ag₃PO₄ was indexed as a body-centered cubic phase with a space group P43n (ICSD no. 14000), while Ni₃(PO₄)₂ was assigned as a monoclinic phase with a space group C12/m1 (ICSD no. 240946). A gradual increase in the intensity of diffraction peaks associated corresponding to the Ag₃PO₄ phase was observed in the diffractograms. As expected, the increase in the concentration of Ag⁺ ions in the ion exchange reaction promoted an increase in the fraction formed of Ag₃PO₄, as the amount of Ni²⁺ ions was replaced. In FTIR spectra, all samples exhibited broad bands centered at 3200 cm⁻¹ and 1670 cm⁻¹ correspond to the stretching and deformation vibrations of the water. The absorption peak at 1005 cm⁻¹ is acribed to the asymmetric stretching vibration of PO43- tetrahedral and 557 cm⁻¹ peak is due to the asymmetric bending vibration of P-O. SEM images revealed that Ni₃(PO₄)₂ is composed of irregular flower-shaped microplates with a aggolomerated nature. Irregular Ag₃PO₄ spheres were observed randonly ditributed on the Ni₃(PO₄)₂ microplates (Figure 1). Therefore, the selective poins located on the surface of Ni₃(PO₄)₂, where the exchange of Ni²⁺ with Ag⁺ took place, played a fundamental role as nucleation and growth sites for Ag₃PO₄ particles.

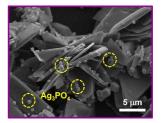


Figure 1. SEM images of 40%Ag₃PO₄/Ni₃(PO₄)₂. The yellow dotted circles show the presence of irregular Ag₃PO₄ spheres on the surface of Ni₃(PO₄)₂ microplates.

The photocatalytic activity of Ni₃(PO₄)₂, Ag₃PO₄ and Ag₃PO₄/Ni₃(PO₄)₂ samples were evaluated for the degradation of MB under blue light illumination. The degradation Ag₃PO₄/Ni₃(PO₄)₂ kinetics of photocatalysts was well-described by a pseudo-firstorder reaction, following the Langmuir-Hinshelwood model. The experiment results indicate a synergistic effect between Ni₃(PO₄)₂ and Ag₃PO₄. Such phenomenon can be attributed to the formation of interfaces that promoted an efficient pathway for the migration of photogenerated species (electron-hole) up to the photocatalyst surface. According to the reaction rate constansts ($k_{app} \times 10^{-3}$ min⁻¹), the optimized photocatalysts were found in the following decreasing order: 60% Ag₃PO₄/Ni₃(PO₄)₂ (238) \cong Ag_3PO_4 (234) > 80% $Ag_3PO_4/Ni_3(PO_4)_2$ (167) > 40% $Ag_3PO_4/Ni_3(PO_4)_2$ (147) >> 20% $Ag_3PO_4/Ni_3(PO_4)_2$ $(35) \simeq Ni_3(PO_4)_2(38)$. In order to understand how the photodegradation reaction proceeds, different radical scavengers were introduced into the MB solution, including BQ for superoxide radical anions (O2⁻), ISO for hydroxyl radicals (OH), and AO for holes (h⁺). In such photocatalysts, both h⁺ and O₂⁻⁻ species played a more significant role as oxidizing agents during the photocatalytic reaction (Figure 2).

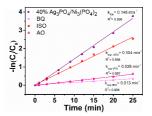


Figure 2. Pseudo-first order reaction constants for MB solution with 40%Ag₃PO₄/Ni₃(PO₄)₂ photocatalyst and radical scavengers.

Conclusions

The concentration of Ag⁺ ions played a crucial role on the photocatalytic performance of Ag₃PO₄/Ni₃(PO₄)₂ for the degradation of MB. In particular, 60% Ag₃PO₄/Ni₃(PO₄)₂ sample exhibited the most promising photocatalytic activity, demonstrating the ability to degrade MB in 25 min. This behavior was attributed to the efficient separation of e⁻/h⁺ pairs due to the formation of interfaces created between Ag₃PO₄ and Ni₃(PO₄)₂. *Acknowledgments*

Special thanks to Fundação Araucária, CNPq, CAPES, and C-LABMU/UEPG.

- References
- [1] A. Bisht, N. Kamboj, V. Kamboj, A. Bisht, Archives of Agriculture and Environmental Science, 5 (2020) 419.
- [2] A. Fujishima, K. Honda, *Nature*, 238 (1972) 37.
- [3] S. Gisbertz, B. Pieber, ChemPhotoChem, 4 (2020) 456.
- [4] Y. Wang, K. Wang, X. Wang, Journal of Colloid and Interface Science, 466 (2016) 178.